Ткани животных и человека

Ткани животных и человека

Ткани животных и человека. Нервная и мышечные ткани

Ткани животных и человека. Нервная и мышечные ткани

Мышечные ткани

Состоят из клеток, в основе которых лежат сориентированные в определенном порядке пучки особых нитей, которые состоят из сократительных белков (актина, миозина и т. п.) – миофибрилл. Различают гладкую (неисчерченную) и исчерченную (поперечнополосатую). Основные функции: сокращение в ответ на возбуждение и расслабление, обеспечение движений, сокращение органов. Мышечная ткань связана с рыхлой соединительной тканью, компоненты которой расположены между ее клетками.

Виды мышечных тканей

Виды мышечных тканей

Неисчерченная (гладкая) мышечная ткань

Состоит из веретенообразных, небольших по размерам (до 0,1 мм длиной) клеток, которые имеют одно ядро и тонкие, лишенные исчерченности миофибриллы. Гладкие мышечные клетки объединяются в пучки, которые состоят из 10–12 клеток. Сокращения бессознательные, слабые, ритмические, почти без усталости. Гладкие мышцы способны к сильному растяжению, развивают большую силу сокращений без значительных затрат энергии. Входят в состав внутренних органов, сосудов, кишечника, желудка позвоночных животных. У низших многоклеточных животных из гладкой мышечной ткани состоят все мышцы.

Исчерченная (поперечнополосатая) мышечная ткань

Клетки удлиненные, многоядерные, имеют большие размеры (до 10- 12 см длиной), исчерченность, большое количество миофибрилл. Миофибриллы состоят из протофибрилл. Миофибриллы имеют вид поперечных полос – в них правильно чередуются светлые и темные диски из сократительных белков (актина, миозина), которые имеют разные коэффициенты преломления света. Тонкие протофибриллы – актин, толстые – миозин. Актин и миозин сами сокращаться не могут. Сокращение актомиозинового комплекса происходит благодаря тому, что нити миозина глубже заходят между нитями актина, реагируя между собой. Эти мышцы способны сокращаться значительно быстрее, в 10-25 раз больше, чем неисчерченные.

Различают исчерченные скелетные и сердечные мышечные ткани.

Исчерченные скелетные ткани входят в состав скелетных мышц, диафрагмы, начального и конечного отделов пищеварительного тракта, исчерченная сердечная ткань – в состав сердечной мышцы.

Исчерченная скелетная мышечная ткань

С помощью сухожилий скелетные мышцы соединяются с элементами скелета и входят в состав опорно-двигательной системы. Мышцы в целом и отдельные их волокна имеют соединительнотканные оболочки. Эти оболочки препятствуют чрезмерному растяжению волокон, мышц. Клетки многоядерные, ядра расположены по периферии. Рост мышечных клеток происходит благодаря слиянию с клетками-спутниками. Сокращения сознательные, сильные, но мышцы быстро утомляются.

Исчерченная мышечная ткань известна у позвоночных животных, членистоногих, кольчатых червей, моллюсков.

Исчерченная сердечная мышечная ткань

По строению она подобна скелетной мышечной ткани, но ее волокна лишены соединительнотканных оболочек и потому могут в некоторых местах сливаться между собой. Клеток-спутников нет. По сердечной мышце быстро распространяются импульсы. Входит ткань в состав одного из слоев (среднего) сердца позвоночных животных – миокарда. Сокращения бессознательные, сильные.

Нервная ткань

Состоит из нейронов и вспомогательных клеток – глиоцитов. Вместе глиоциты образуют нейроглию. В нервной ткани возникают нервные импульсы, которые имеют электрическую природу.

Основные функции нервной ткани

Основные функции: возбудимость и проводимость.

Нейрон

Нейрон – структурная единица нервной ткани. Способен воспринимать раздражения, превращать их в нервные импульсы и проводить последние. Состоит из тела и отростков: длинного – аксона и коротких – дендритов. Теряют в зрелом состоянии способность к делению. Аксон (от греч. аксон – ось) – длинный (до 1 м), разветвленный на конце отросток нейрона, по которому импульсы поступают от его тела к другим нейронам или органам. Дендрит (от греч. дендрон – дерево) – короткий, иногда удлиненный, очень разветвленный отросток нейрона, по которому возбуждение проводится к телу нервной клетки от рецепторов или других нервных клеток. Аксон один, дендритов может быть один или несколько.

Нейроны различают по количеству отростков (аксона и дендритов): униполярные – имеют один отросток, который после выхода из тела клетки разветвляется на аксон и дендрит, биполярные – имеют один аксон и один дендрит, мультиполярные – имеют один аксон и много дендритов. Униполярные нейроны характерны преимущественно для беспозвоночных животных.

Нейроны по характеру функций разделяют на чувствительные (афферентные, сенсорные), вставочные (ассоциативные) и двигательные (эфферентные). Чувствительные (афферентные, сенсорные) нейроны воспринимают раздражения из внешней и внутренней среды. Связи между отдельными нейронами осуществляют вставочные (ассоциативные) нейроны. Нервные импульсы от нервной системы к рабочим органам передают двигательные нейроны.

Тела нейронов и короткие отростки (дендриты) образуют серое вещество, аксоны – белое. Белое вещество образуется благодаря отросткам нейронов (аксонам), покрытым светлой миелиновой оболочкой.

Читайте также:  Определение общего уровня IgE в сыворотке крови человека

Нейроглия

Нейроглия сопровождает нейроны. Ее клетки меньше нейронов, имеют немного отростков, сохраняют способность к делению. Клетки нейроглии импульсов не проводят, но нейроны без них гибнут. Функции нейроглии: трофическая, опорная, защитная, нейроглия заполняет промежутки между нейронами, отделяет нейроны один от другого, образует электроизолирующие оболочки вокруг отростков нейронов, синтезирует некоторые биологически активные вещества, необходимые для нормального функционирования нервной системы.

Специализированные нервные клетки секретируют биологически активные соединения – нейрогормоны.

МЫШЕЧНАЯ СИСТЕМА

Скелетная мышечная ткань в комплексе с сухожилиями является активной частью аппарата движения животного. Закрепляясь на костях скелета как на системе рычагов, она образует прочные мышечно-костные комплексы и обеспечивает перемещение всего организма, его отдельных частей (головы, шеи, конечностей), а также дыхательные движения, жевание, глотание и т.п., поддерживает скелет в определенном положении, сохраняя форму всего организма.

Строение мышц

Движения животного крайне разнообразны. Животное может или перемещаться в пространстве, или только изменять положение отдельных частей своего тела относительно друг друга. Движения животного — ответ на раздражение, полученное из внешней или внутренней среды. В момент острого нервного возбуждения под влиянием чувства гнева, отчаяния, опасности сила мышц чрезвычайно увеличивается. На любое раздражение (механическое, химическое, электрическое) мышца отвечает укорочением, т.е. сокращением.

В процессе работы, производимой мышечной системой, до 70% химической энергии, получаемой с кровью, переходит в тепловую, а в механическую работу — лишь около 30%. Следовательно, скелетные (соматические) мышцы — не только активная часть системы органов произвольного движения, но и орган теплообразования.

Общая масса скелетных мышц составляет около 60% и зависит от массы и породы животного, его возраста и условий жизни.

По строению и функциональным признакам мышечную ткань подразделяют на поперечно-полосатую (произвольную) и гладкую (непроизвольную). Мышцы головы, шеи, туловища, конечностей и некоторых внутренних органов (глотка, верхняя часть пищевода, гортань) поперечно-полосатые (скелетные), а в стенках внутренних органов, кровеносных сосудов, протоках желез, кожи — гладкие.

Строение мышц. Скелетная мышца — активный орган произвольного движения, состоит из двух различных по функции и строению частей: мышечного брюшка и сухожилий. Мышечное брюшко, сокращаясь, производит работу, а сухожилия служат для закрепления брюшка на костях как рычагах движения (рис. 2.53).

Мышечное брюшко построено из паренхимы (мышечных волокон), нервов, сосудов и стромы (соединительнотканного остова). Сухожилие мышц состоит из коллагеновых волокон, упакованных в соединительнотканный остов, в котором проходят нервы и кровеносные сосуды. Мышца иннервируется соматическим и симпатическим (для сосудов) нервами, содержащими двигательные и чувствительные нервные волокна.

Пучок II порядка

Пучок / порядка

Рис. 2.53. Строение мышцы

? 4г -фі

Ретикулярные волокна Мышечно-сухожильные соединения

[Писменская В.Н., Боев В.И. Практикум по анатомии и гистологии сельскохозяйственных животных. М.: КолосС, 2010. С. 113]

Каждое мышечное волокно снабжено большим числом кровеносных капилляров, которые образуют вокруг него узко- или широкопетлистые сети, и покрыто тонкой соединительнотканной оболочкой — эндомизием. Отдельные мышечные волокна соединены в пучки первого, второго и третьего порядков, которые окружены внутренним перемизием, образованным перегородками, отходящими от наружного перемизия, — плотной соединительнотканной оболочки, покрывающей каждую мышцу. У упитанных животных в пе-ремизии накапливается жир, образуя прослойку в мышцах. Такая мраморность характерна для мяса высшей категории.

Цвет мышцы зависит от вида, пола, возраста, упитанности животных и топографии мышц. Например, мышцы у молодых животных светлее, чем у взрослых; у крупного рогатого скота светлее, чем у лошадей; на туловище светлее, чем на конечностях; у диких животных более темные, чем у домашних. Темные мышцы богаче миогло-бином (белок, связанный с ионом железа), с более густой сетью кровеносных сосудов и лучшим кровенаполнением. Пластинчатые мышцы характеризуются плоской формой брюшка, сухожилий, они расположены в основном на туловище. Толстые мышцы могут быть самой разнообразной формы — веретенообразной, грушевидной, конусовидной. Некоторые мышцы имеют несколько головок (дву-, грех- и четырехглавые). Встречаются мышцы с двумя брюшками (двубрюшные). В состоянии покоя мышца относительно напряжена, что называют тонусом мышцы.

Классификация скелетных мышц. Мышцы, выполняющие различные функции, отличаются друг от друга строением, и их подразделяют на динамические и статодинамические. В таких мышцах различают анатомический и физиологический поперечники. Анатомический поперечник проецируется перпендикулярной плоскостью, проведенной через середину мышечного брюшка, а физиологический поперечник — перпендикулярно направлению волокон.

Динамические мышцы по типу строения относят к простым мышцам, состоящим из пучков мышечных волокон, идущих параллельно продольной оси мышцы. У этих мышц анатомический и физиологический поперечники равны, они обеспечивают наибольший размах движения (плечеголовная мышца, прямая мышца живота и т.д.). При сокращении такие мышцы выигрывают в расстоянии, но проигрывают в силе.

Читайте также:  Боли после имплантации зуба причины, отзывы пациентов, мнения врачей

Статодинамические мышцы имеют перистое строение и могут быть одно-, дву- и многоперистыми. В одноперистых мышцах пучки мышечных волокон идут в одном направлении косо, продольно оси волокна, так как сухожилия, к которым они прикрепляются, расположены на противоположных концах и поверхностях мышечного брюшка и образуют блестящие тяжи — «сухожильные зеркала». В двуперистых мышцах пучки мышечных волокон идут косо, но уже в двух направлениях, между тремя сухожилиями, одно из которых находится в середине мышечного брюшка, а два других — с противоположных концов, окружая его с двух сторон. В многоперистых мышцах пучки мышечных волокон проходят во многих направлениях, так как внутрь брюшка проникает несколько сухожилий.

Объем работы каждой мышцы измеряется затраченной силой, умноженной на затраченный путь.

Сила мышцы прямо пропорциональна числу мышечных волокон, а путь прямо пропорционален их длине. Чтобы определить силу мышц, используют условную площадь физиологического поперечника, который у перистых мышц всегда больше анатомического. Поэтому многоперистые мышцы выигрывают в силе, но проигрывают в расстоянии. Таким образом, сила мышцы зависит от ее физиологического поперечника и от числа мышечных волокон.

Мышечная ткань. Строение, функции, классификация

Мышечная ткань образует активную часть опорно-двигательного аппарата – скелетные мышцы и мышечные оболочки внутренних органов. Её главной особенностью является способность сокращаться и возвращаться в исходное положение под влиянием нервных импульсов. Именно так осуществляются процессы дыхания, движения крови по сосудам, различные перемещения тела в пространстве. Мышечная ткань развивается из мезодермы еще на стадии эмбрионального развития. Выделяют 3 различных вида этой ткани, каждый из которых следует рассмотреть детально. Это поперечнополосатая, гладкая и сердечная поперечнополосатая мышечная ткань.

Поперечнополосатая мышечная ткань

Эта ткань характерна для наших скелетных мышц, отвечающих за движение тела, мимику и т.д. Выглядит как длинные волокна чаще всего закрепленные концами с сухожилиями. Когда волокно сокращается, сухожилие натягивается, что приводит к некому движению, например сгибанию пальца. Длина мышечного волокна в разных участках тела сильно различается от нескольких миллиметров до 12,5 см. Диаметр составляет от 10 до 70 мкм. Снаружи отдельные мышцы и группы мышц покрыты соединительно тканым «чехлом» – фасцией.

Клеточное строение

В поперечнополосатой мышечной ткани клеток в привычном понимании этого слова нет. Здесь клетки сливаются в единое целое, образуя многоядерное волокно, с общими органоидами – так называемый симпласт. Внутренняя среда симпласта – саркоплазма, содержит включения жира и гликогена, что совершенно необходимо для окислительных процессов, происходящих в мышцах.

Сократительный аппарат

Главным элементом сократительного аппарата являются миофибриллы – многочисленные белковые полоски, протянутые вдоль симпласта. Их диаметр составляет примерно 1 мкм. Миофибриллы как раз и придают мышечной ткани полосатость и состоят из нитей, называемых миофиламентами – удлиненных молекул сократительных белков: актина и миозина.

Миофибрилла состоит из участков (полос) обладающих различными химическими и физическими свойствами. Эти участки принято называть дисками. I-диски преломляют луч света только один раз, это свойство называется изотропностью. Они светлого цвета и состоят из белков актина. А-диски являются анизотропными, т.к. преломляют луч дважды. Они заметно темнее и состоят из актина и миозина. Структура миофибриллы состоит из повторяющих участков с актином и миозином. Каждый такой участок, является сократительной единицей и назывется саркомером. При получении нервного импульса происходит сокращение саркомеров, а вместе с ними и миофибриллы. Важную роль в мышечном сокращении играют ионы кальция.

Иннервация

Двигательные нервные клетки (мотонейроны), имеют длинный отросток (аксон), который подходит к мышце. У поверхности мышечного волокна аксон заканчивается, разделяясь на несколько коротких отростков, которые проникают в мышечные углубления. Так формируется нервное окончание. Мышечная ткань в области «подключения» нерва именуется двигательной концевой пластинкой.

Соединение двигательной концевой пластинки и окончания аксона называется нервно-мышечным синапсом. Мотонейрон и все мышечные волокна, которые он контролирует, посредством аксона образуют двигательную (нейромоторную) единицу – функциональную единицу скелетной мускулатуры.

Типы волокон скелетных мышц

Большинство мышц человеческого тела включает в состав волокна различных типов, обычно с преобладанием какого-то одного вида, лучше выполняющего функции данной мышцы. Давайте рассмотрим эти типы:

  • Медленные физические волокна окислительного типа – отличаются высоким содержанием белка миоглобина, способного связывать кислород. По своим свойствам миоглобин схож с гемоглобином. Мышцы с преобладанием этих волокон называют красными из-за их темно-красного цвета. Они выполняют функцию поддержания позы. Утомление происходит чрезвычайно медленно, а период полного восстановления очень короткий. Это достигается за счет миоглобина и большого числа митохондрий. Нейромоторные единицы красных мышц содержат большое количество мышечных волокон.
  • Быстрые физические волокна окислительного типа способны производить быстрые сокращения без заметного утомления. Содержат большое количество митохондрий и способны образовывать АТФ методом окислительного фосфолирования. Нейромоторная единица содержат меньшее число волокон, чем в красных мышцах.
  • Быстрые физические волокна с гликолитическим типом окисления – отличаются тем, что получают АТФ методом гликолиза. Из-за отсутствия миоглобина имеют белый цвет. Способны к сильным, быстрым сокращениям, но сравнительно быстро утомляются.
  • Тонические волокна принципиально отличаются от остальных групп имеющих одну, максимум несколько концевых пластинок. Тонические волокна имеют очень много синаптических контактов с аксоном, вследствие чего напряжение и расслабление мышцы происходит постепенно. Тонические волокна входят в состав наружных мышц глаза.
Читайте также:  Что такое физиотерапия в гинекологии показания и противопоказания

Функции и свойства скелетных мышц

Функции удобно представить в виде следующего списка:

  • обеспечение и поддержание позы;
  • перемещение тела в пространстве;
  • перемещение одной части тела относительно другой;
  • терморегуляция (выделение тепла).

Свойства скелетных мышц:

  • возбудимость – способность реагировать на действия раздражителя с последующим изменением мембранного потенциала и ионной проводимости (например, для ионов кальция). Пресипнатическое окончание аксона выделяет стимулирующее вещество – медиатор ацетилхолин, который и исполняет роль раздражителя;
  • проводимость – способность распространять возбуждение (потенциал действия) вдоль и вглубь мышечного волокна;
  • сократимость – способность укорачиваться или увеличивать напряжение во время возбуждения;
  • эластичность – увеличения напряжения при растягивании;
  • тонус – скелетные мышцы постоянно находятся в состоянии некоторого сокращения. При неврологических заболеваниях тонус может быть повышен либо понижен относительно нормы.

Гладкая мышечная ткань

Данный вид ткани находится в стенках внутренних органов, в лимфатических и кровеносных сосудах. Сокращения этой ткани в отличие от поперечнополосатой не подчиняется нашей воли. Поэтому ее еще называют непроизвольной мышечной тканью. Сокращается медленно, приблизительно за 60-80 секунд. Визуально отличается от других разновидностей мышечной ткани отсутствием поперечной исчерченности. Выделяют 2 подвида:

  • висцеральные (унитарные) гладкие мышцы – почти вся гладкая мускулатура образована этим подвидом, за исключением ресничной мышцы и мышцы радужки глаза.
  • мультиунитарные гладкие мышцы образуют ресничную мышцу и мышцы радужки глаза. Мультиунитарные отличаются от висцеральных большим количеством точек иннервации, что позволяет им работать с высокой скоростью. Это они отвечают за изменения диаметра зрачка под влиянием света.

Клеточное строение

Гладкая мышечная ткань состоит из отдельных клеток – миоцитов, имеющих веретенообразную форму. Длина миоцитов составляет 20-500 мкм, толщина 5-8 мкм. Ядро имеет эллипсовидную форму. Мембраны прилегающих к друг другу клеток образуют соединения – нексусы. Нексусы передают нервное возбуждение от одной клетки к другой. Миоциты содержат нити актина и миозина, но здесь они расположены менее упорядоченно, чем в поперечнополосатой мышечной ткани.

Иннервация

Гладкая мышечная ткань имеет двойную иннервацию: симпатическую (адренергическую) и парасимпатическую (холинэргическую). В зависимости от органа одна из них способствует возбуждению, а другая наоборот расслаблению гладкой мускулатуры. Например, мышечный тонус кишечника повышается под влиянием парасимпатической системы и уменьшается под влиянием симпатической. В тоже время адренергические нервы повышает тонус сосудистой стенки, а парасимпатическое влияние способствует снижению этого тонуса.

В гладкой мышечной ткани отсутствуют концевые пластинки и отдельно взятые нервные окончания. Холинергические и адренергические нервные волокна содержат утолщения – варикозы, которые расположены по всей длине мышцы. Эти варикозы содержат гранулы с химическими активными веществами – медиаторами. Для парасимпатической нервной системы медиатором служит ацетилхолин, а в симпатической системе его роль исполняет норадреналин. Миоциты не контактирующие с варикозами напрямую, активируются через нексусы.

Сердечная поперечнополосатая ткань

Данная ткань образует сердечную мышцу. По своей структуре частично совмещает в себе свойства гладкой и поперечнополосатой мышечной ткани. Клеточное строение представлено кардиомицитами. Сократительные кардиомиоциты отличаются цилиндрической формой и имеют длину 100-150 мкм. Их концы соединяются, образуя функциональные волокна толщиной 10-20 мкм. Также в сердечной ткани присутствуют проводящие кардиомиоциты. Они принимают сигналы от синусно-предсердного узла (главный узел проводящей системы сердца) и передают его сократительным кардиомиоцитам.

Ссылка на основную публикацию
Техника введения инсулина
Алгоритм выполнения подкожной инъекции инсулина I. Подготовка к процедуре: 1. Представиться пациенту, объяснить ход и цель процедуры. Убедиться в наличии...
Температура перед родами 3
Предвестники родов. Как понять, что настало время ехать в роддом? Каждая беременная женщина с волнением и радостью ждет предстоящих родов....
Температура после прививки АКДС сколько держится и что делать при высоких показателях
Температура как реакция на прививку АКДС В последние годы большую активность проявляет так называемое движение антипрививочников, оспаривающих безопасность вакцинации. В...
Техника забора крови из пальца как правильно, правила, алгоритм, методика
Алгоритм забора крови из пальца При обращении к врачу в случае заболевания или для прохождения профилактического осмотра, назначают ряд лабораторных...
Adblock detector