Экскавация диска зрительного нерва при глаукоме

Экскавация диска зрительного нерва при глаукоме

Офтальмоскопические и фотографические методы исследования диска зрительного нерва

Появление сканирующей лазерной офтальмоскопии привело к тому, что многие авторы стали относить морфометрические изменения ДЗН к первичным проявлениям глаукомы, а изменения полей зрения к вторичным. Многие глаукоматологи пришли к единому мнению, что при ранней глаукоме имеет место диссоциация структурных и функциональных изменений: структурные признаки опережают функциональные, тогда как функциональные лучше характеризуют процесс прогрессирования глаукомы.

Ophthalmoscopic and photographic methods of optic disc analysis

The introduction of scanning laser ophthalmoscopy led to the fact that many authors began to relate the morphometrical changes of optic disc to the primary manifestation of glaucoma, but the changes of visual fields to the secondary one. Many glaucoma investigators came to the conclusion that in early glaucoma a dissociation of structural and functional changes takes place: structural indications take the lead over functional ones, whereas functional indications define the process of glaucoma progression better.

Главными симптомами глаукомы, которые лежат в основе глаукомных поражений, являются изменения диска зрительного нерва и зрительных функций (прежде всего, полей зрения и, как следствие, снижение остроты зрения). Первые признаки открытоугольной глаукоме, особенно при «нормальном» внутриглазном давлении, следует искать не в нарушениях полей зрения (они часто могут зависеть от других причин и очень флюктуируют) и тем более не в нарушениях гидродинамики (чувствительность офтальмотонометрии не превышает 50%), а в состоянии диска зрительного нерва (ДЗН) [1].

В 80-х годах 20-го века офтальмологи стремились от субъективного «глазомера» (когда при офтальмоскопии определяют приближенно, какую долю от диаметра диска зрительного нерва, принятого за единицу, составляет диаметр экскавации) перейти к более точной количественной оценке экскавации. При этом они стремились измерить не только диаметр экскавации, но и ширину нейроретинального пояска (НРП), который по внутреннему контуру ограничивается краями экскавации, а его внешний контур совпадает с краями диска зрительного нерва, который называется кольцом Эльшнига. Для этих целей D. Montgomery [2], И.Л. Симакова [3] использовали микрометрические измерения деталей диска зрительного нерва с помощью его видеоизображения фотографирование монохроматическое и в бескрасном свете [4], биомикроофтальмоскопию с линзой Гольдмана с обычным светом и светом различного спектрального состава, стереофотограмметрию. В начале 90-х годов все чаще стали использовать метод планиметрии, при котором производили микрометрические измерения деталей диска зрительного нерва по его изображению на экране [3, 5]. Затем начали применять компьютерную обработку и видеографическую технику. Появились работы, использовавшие колориметрическую оценку диска зрительного нерва в норме и при глаукоме. [6-9]. В 80-х годах 20-го века была разработана конфокальная сканирующая лазерная офтальмоскопия (SLO), послужившая основой для развития лазерной поляриметрии, и практически одновременно в Германии (1989-1993 гг.) и в США (1995 г.) были созданы оптические когерентные ретинальные томографы, построенные по типу ультразвукового В-сканирования, только вместо ультразвука в них используется инфракрасный лазер [1].

В последние годы появилось много новых аппаратов, использующих эту технологию: ретинальная поляриметрия (SLP), оптическая когерентная томография (OCT), анализаторы ретинальной толщины (RTA), GDx VSS и другие. Однако наибольшее распространение получил Heidelberg Retina Tomograph (HRT II) — (10). Все методы измерения параметров диска зрительного нерва, такие как стереофотография, ретинальная планиметрия основаны на измерении НРП и экскавации диска зрительного нерва. Размер экскавации в здоровых глазах зависит от количества нервных волокон и от размера диска. Количество и диаметр нервных волокон при отсутствии патологии более постоянная величина. Оно поддается только возрастным изменениям, теряя каждый год от 0,28% (планиметрия) до 0,39% (SLO). По данным F. Mikelberg (1995), c возрастом количество аксонов убывает, а их средний диаметр возрастает. Статистически достоверной зависимости между размером диска зрительного нерва и количеством нервных волокон он не обнаружил.

Между тем, размер диска варьирует в довольно широких пределах: площадь от 0,92 до 5,5 мм 2 , диаметр — от 1,2 до 2,5 мм, составляя в среднем 1,88 мм в вертикальном диаметре и 1,77 мм в горизонтальном [5]. Таким образом, размер диска зрительного нерва может косвенно влиять на оцениваемые размеры экскавации. Если для небольшого диска характерна небольшая экскавация, то при большом диске экскавация значительно больше и не обязательно указывает на наличие глаукомы. M. Hermann еt al., обследовав 1764 глаза у 882 здоровых лиц со средним возрастом 46,8 лет выделил микродиски при площади диска зрительно нерва менее 1,14 мм 2 и макродиски при площади диска зрительного нерва более 2,71 мм 2 . R. Sampaolesi et.al. указывают, что стереометрические параметры площади диска и объема нейроретинального пояска при мегалодисках значительно отличаются от таковых у пациентов с глаукомой и у здоровых, но аналогичны данным у пациентов с врожденной глаукомой. Авторы считают, что мегалодиски, характеризующиеся большим размером зрительного нерва, имеющие патологический вид при офтальмоскопии с увеличенной экскавацией, необходимо дифференцировать от псевдоглаукомных заболеваний. По мнению авторов, мегалодиски встречаются гораздо чаще врожденных аномалий, но игнорируются в мировой литературе. J. Jonas [5] считает, что размер диска зрительного диска зависит от рефракции: он увеличивается при миопии более 8,0 D и уменьшается при гиперметропии более 4,0 D. По данным H. Nakamura et al. [11], большой размер диска характеризуется увеличением площади и объема экскавации. значительно повышает чувствительность лазерной ретинотомографии для раннего выявления глауком.

Проведенные нами исследования параметров диска в зависимости от его площади показали четкую прямую корреляцию всех параметров диска, как имеющих отношение к экскавации (lin cup/disc-отношение диаметра экскавации к диаметру диска, cup area-площадь нейроретинального пояска и cup vol-объем нейроретинального пояска, cup/disc area ratio -отношение площади экскавации к площади диска, cup/rim vol. — отношение объема экскавации к объему нейроретинального пояска, mean и max cup depth — средняя и максимальная глубина экскавации, так и к параметрам, отражающим состояние нейроретинальной ткани диска (rim area, rim vol.,-площадь и объем нейроретинального пояска, mean RNFL thickness-средняя толщина ретинальных волокон в мм и RNFL cross sect area — полная площадь поперечного сечения ретинальных волокон в мм 2 ). Но в большей степени изменения касались параметров, связанных с экскавацией. Многие авторы изучали изменение размера диска зрительного нерва в зависимости от возраста [13, 14-17], однако полученные ими данные противоречивы. J. Tan et al. [12] указывают, что на размер диска при ретинотомографии могут влиять возрастные изменения преломляющей силы хрусталика, наличие ИОЛ, аксиальная длина глаза, а также расстояние между обследуемым глазом и объективом прибора. С этим не согласен N. Sheen at.al., отмечая, что параметры диска не меняются значительно в зависимости от рабочего расстояния и некоррегированного астигматизма до 2,5 D. Мы также не выявили каких-либо закономерных статистически достоверных различий параметров диска в зависимости от пола и возраста, изучая фотографии 2274 глаз, обнаружил увеличение размеров диска зрительного нерва на0,001 мм ежегодно параллельно с увеличением экскавации на0,002 мм, из чего сделал заключение о постоянном значении нейроретинального пояска.

Много работ посвящено исследованию параметров диска в нормальных глазах [11, 13, 17]. В представленной ниже таблице видно, что средние параметры диска в целом заметно различаются по данным различных авторов и по использованному методу исследования.

R. Burk отмечает, что НРП уменьшается с возрастом, в то время как сup/disc area ratio (отношение площади экскавации к площади диска) возрастает, а связи между возрастом и площадью диска зрительного нерва не выявлено. Это мнение поддерживает D.Poinoosawmy at al, отметив прогрессивное уменьшение толщины слоя нервных волокон по краю диска зрительного нерва с возрастом. А.В. Куроедов с соавт. [10] выявил увеличение площади нейроретинального пояска в старшей возрастной группе (более 50 лет) по сравнению с молодыми (30-50 лет), а K. Gunderson еt al. указывает на то, что топография диска зрительного нерва с возрастом меняется незначительно.

Были проведены сравнительные исследования параметров диска зрительного нерва с использованием нейроретинального пояска и других приборов [17,18]. Ж.Ю. Алябьева [18], сравнивая данные, полученные с помощью HRT-II и лазерного офтальмоскопа фирмы Rodenstock, не нашла заметных расхождений, но отметила, что точность методов зависит от человеческого фактора, т.к. контуры диска определяются вручную. На значение субъективного фактора указывали другие авторы. Сравнение данных, полученных с помощью HRT, OCT и GDxVSS, показало значительную корреляцию между ними. Причем, в глазах с глаукомой наиболее показательными были: для GDxVSS — nerve fiber index, для ОСТ — нижний ретинальный квадрант, для HRT — линейная дискриминантная функция FSM. Сканирующая лазерная томография диска зрительного нерва по данным авторов имеет большую ценность и более чувствительна для определения площади нейроретинального пояска (84,3%), чем стереоскопическая фотография диска (70,6%).

Читайте также:  Антивир для пчел характеристика, инструкция по применению

Самое большое количество работ, как отечественных, так и зарубежных авторов, посвящено исследованию параметров ДЗН при глаукоме, глазной гипертензии и у лиц с подозрением на глаукому [13, 16-21]. У каждого автора был свой подход и подбор изучаемых параметров. Большинство исследовало площадь и объем нейроретинально пояска другие, помимо указанных выше, анализировали cup/disc area ratio (отношение площади экскавации к площади диска), третьи главное внимание уделяли изучению перипапилярной сетчатки и толщине нервных волокон [14]. Все авторы единодушно отмечали уменьшение площади и объема нейроретинального пояска, толщины нервных волокон по краю диска и в перипапилярной зоне у больных глаукомой. Чувствительность этих параметров составила от 38 до 88%, а специфичность от 60 до 99% [11]. Вероятность повреждения диска зрительного нерва наиболее выражена в верхнем и нижнем его полюсах нейроретинального пояска [24]. Некоторые авторы уделяют большое внимание среднему наклону перипапиллярного слоя сетчатки, считая его наиболее чувствительным при постановке диагноза глаукомы [23]. Однако, как указывает ряд авторов, одновременный анализ нескольких параметров диска зрительного нерва по секторам значительно повышает чувствительность лазерной ретинотомографии для раннего выявления глаукомы.

Нормальные параметры ДЗН по данным различных авторов

Новая система для определения стадии структурных изменений при первичной открытоугольной глаукоме на основе морфометрического анализа диска зрительного нерва при Гейдельбергской ретинальной томографии II (версия 3.1.2)

Полный текст:

  • Аннотация
  • Об авторах
  • Список литературы
  • Cited By

Аннотация

Цель: выявление корреляционной связи между общими и секторальными топографическими параметрами (ТП) диска зрительного нерва (ДЗН) и показателями стандартной автоматизированной периметрии; определение диагностической точности TП ДЗН; разработка системы для определения стадии структурных изменений при первичной открытоугольной глаукоме (ПОУГ) с использованием общих и секторальных ТП ДЗН при проведении Гейдельбергской ретинальной томографии (HRT) II.

Пациенты и методы: обследовано 257 глаз 176 человек (средний возраст 64±11 лет), 69 мужчин (79 глаз) и 107 женщин (178 глаз). Пациенты были разделены на четыре группы: контрольную группу здоровых добровольцев и три группы пациентов с ПОУГ в зависимости от выраженности изменений в поле зрения (по классификации Hodapp-Parrish-Anderson). Было проведено полное офтальмологическое обследование глаз, стандартная компьютерная периметрия (SITA стандарт 30‑2), HRT II (3.1.2) с корреляционным и ROC анализом с использованием версии 17.0 статистического пакета SPSS.

Результаты: из топографических параметров площадь нейроретинального пояска (НРП) (r = 0.469, r = –0.384) и объём НРП (r = 0.431, r = –0.363) в наибольшей степени коррелировали с изменениями поля зрения в отношении соответствующих периметрических индексов — MD и PSD ТП ДЗН. Наиболее высокой диагностической ценностью обладают: показатель экскавации (AUROC = 0.778), вертикальное отношение экскавация / ДЗН (AUROC = 0.721), отношение площади НРП / ДЗН (AUROC = 0.714), площадь НРП (AUROC = 0.711) и объём НРП (AUROC = 0.706). Разработана система определения стадии структурных изменений при ПОУГ на основе общих, секторальных и топографических параметров ДЗН, полученных в ходе исследования с помощью HRT II. Система включает в себя четыре различных этапа — ранний, умеренный, расширенный и терминальный, и каждый из них характеризуется интервалом величины выбранных ТП.

Выводы: Изменения величины общих топографических параметров — площади и объема
НРП — в наибольшей степени обусловливают изменения ЗП при ПОУГ. Показатель, который отражает форму экскавации — cup shape measure, следует учитывать при ранней диагностике глаукомы. Предлагаемая комбинированная система классификации изменений при ПОУГ отражает одновременно степень и локализацию дефектов в ДЗН, а также наличие определенных признаков прогрессирования болезни. Возможности использования данной системы при оценке прогрессирования глаукомы определяются наличием стандартных критериев.

Ключевые слова

Об авторах

Список литературы

1. Traverso CE, Walt JG, Kelly SP, et al. Direct costs of glaucoma and severity of the disease: a multinational long term study of resource utilisation in Europe. Br J Ophthalmol 2005; 89:1245‑9.

2. Bowd C, Zangwill LM, Medeiros FA, et al. Confocal scanning laser ophthalmoscopy classifiers and stereophotograph evaluation for prediction of visual field abnormalities in glaucoma-suspect eyes. Invest Ophthalmol Vis Sci 2004; 45 (7):2255‑62.

3. Feiner L, Piltz-Seymour JR. Collaborative Initial Glaucoma Treatment Study: a summary of results to date. Curr Opin Ophthalmol 2003; 14:106‑11.

4. Spaeth GL, Lopes JF, Junk AK et al. Systems for staging the amount of optic nerve damage in glaucoma: a critical review and new material. Surv Ophthalmol 2006 Jul-Aug; 51 (4):293‑315.

5. Ferreras A, Pablo LE, Pajarín AB, et al. Diagnostic ability of the Heidelberg Retina Tomograph 3 for glaucoma. Am J Ophthalmol 2008 Feb; 145 (2):354‑359.

6. Iliev ME, Meyenberg A, Garweg JG. Morphometric assessment of normal, suspect and glaucomatous optic discs with Stratus OCT and HRT II. Eye (Lond) 2006 Nov; 20 (11):1288‑99.

7. Kuroyedov AV, Golubev SYu, Shafranov GV. [Morphometric criteria optic nerve head and possibilities of modern laser diagnostics equipment]. Issledovanie morfometricheskih kriteriev diska zritel’nogo nerva v svete vozmozhnostej sovremennoj lazernoj diagnosticheskoj tehniki [Glaucoma] Glaukoma 2005; 2:7‑18. (in Russ.)

8. Machekhin VA, Fabrikantov OL. [Color topography of the pathologic parameters of the OD by means of the laser scanning retinotomograph HRT III]. Bulgarian Forum Glaucoma 2014; 4 (1):13‑21.

9. European Glaucoma Society. Terminology and Guidelines for Glaucoma. Savona, Italy, IIIrd Edn, 2008 (www.eugs.org).

10. Zangwill LM, Weinreb RN, Beiser JA, et al. Baseline topographic optic disc easurements are associated with the development of primary open-angle glaucoma: the Confocal Scanning Laser Ophthalmoscopy Ancillary Study to the Ocular Hypertension Treatment Study. Arch Ophthalmol 2005 Sep; 123 (9):1188‑97.

11. Hwang YH, Kim YY. Glaucoma Diagnostic Ability of Quadrant and Clock-Hour Neuroretinal Rim Assessment Using Cirrus HD Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2012; 53:2226‑34.

12. Larrosa JM, Polo V, Ferreras A, et al. Predictive value of confocal scanning laser for the onset of visual field loss in glaucoma suspects. Ophthalmology 2012 Aug; 119 (8):1558‑62.

13. Leung CK, Liu S, Weinreb RN, et al. Evaluation of retinal nerve fiber layer progression in laucoma a prospective analysis with neuroretinal rim and visual field progression. Ophthalmology 2011; 118:1551‑7.

14. Weinreb RN, Zangwill LM, Jain S, et al., OHTS CSLO Ancillary Study Group. Predicting the onset of glaucoma: the confocal scanning laser ophthalmoscopy ancillary study to the Ocular Hypertension Treatment Study. Ophthalmology 2010 Sep; 117 (9):1674‑83.

15. Armaly MF: The optic cup in the normal eye. I. Cup width, depth, vessel displacement, ocular tension and outflow facility. Am J Ophthalmol 1969; 68:401‑7.

16. Schulz S, Mardin CY, Diller M, et al. Improvement of Glaucoma Classification based on HRT using a Multi Parameter Analysis and the Relationship to Spectralis RNFL Thickness Measurements. ARVO — abstracts 2011, Fort Lauderdale, Florida.

17. Jonas JB, Gusek GC, Naumann GO: Optic disc morphometry in chronic primary open-angle glaucoma. II. Correlation of the intrapapillary morphometric data to visual field indices. Graefes Arch Clin Exp Ophthalmol 1988; 226:531‑8.

18. Richardson KT. Glaucoma and glaucoma suspects, In Richardson KT, eds. Glaucoma: Conceptions of a Disease, Pathogenesis, Diagnosis, Therapy. Philadelphia, WB Saunders, 1978, p 2‑6.

19. Nicolela MT, Drance SM. Various glaucomatous optic nerve head appearences: clinical correlations. Ophthalmology 1996; 103:640‑9.

20. Omodaka K, Nakazawa T, Otomo T, et al. Correlation between morphology of optic disc determined by Heidelberg Retina Tomograph II and visual function in eyes with open-angle glaucoma. Clin Ophthalmol 2010; 4:765‑772.

Читайте также:  Бакпосев из цервикального канала для чего делается, что выявляет, подготовка

21. Brusini P, Zeppieri M, Tosoni C, et al. Optic disc damage staging system. J Glaucoma 2010; 19:442‑9.

22. Spaeth GL, Henderer J, Steinmann W. The disc damage likelihood scale: its use in the diagnosis and management of glaucoma. Highlights Ophthalmol 2003;31:4‑16.

23. Cho BJ, Park KH. Topographic correlation between β-zone parapapillary atrophy and retinal nerve fiber layer defect. Ophthalmology. 2013 Mar; 120 (3):528‑34.

24. Lee EJ, Kim TW, Weinreb RN. β-Zone parapapillary atrophy and the rate of retinal nerve fiber layer thinning in glaucoma. Invest Ophthalmol Vis Sci 2011 Jun 22; 52 (7):4422‑7.

25. Prata TS, De Moraes CG, Teng CC. Factors affecting rates of visual field progression in laucoma patients with optic disc hemorrhage. Ophthalmology 2010 Jan; 117 (1):24‑9.

26. See JL, Nicolela MT, Chauhan BC. Rates of neuroretinal rim and peripapillary atrophy area change: a comparative study of glaucoma patients and normal controls. Ophthalmology 2009; 116:840‑7.

27. Teng CC, De Moraes CG, Prata TS, et al. Beta-Zone parapapillary atrophy and the velocity of glaucoma progression. Ophthalmology 2010 May; 117 (5):909‑15.

28. Teng CC, De Moraes CG, Prata TS, et al. The region of largest β-zone parapapillary atrophy area predicts the location of most rapid visual field progression. Ophthalmology 1 Dec; 118 (12):2409‑13.

29. Davitt BV, Wallace DK. Plus disease. Surv Ophthalmol 2009 Nov-Dec; 54 (6):663‑70.

Для цитирования:

Ангелов Б., Тошев А. Новая система для определения стадии структурных изменений при первичной открытоугольной глаукоме на основе морфометрического анализа диска зрительного нерва при Гейдельбергской ретинальной томографии II (версия 3.1.2). Офтальмология. 2015;12(3):63-70. https://doi.org/10.18008/1816-5095-2015-3-63-70

For citation:

Anguelov B., Toshev A. New system for stage determination of the structural changes in primary open-angle glaucoma based on morphometric analysis of the optic disk performed by Heidelberg Retina Tomograph II (version 3.1.2). Ophthalmology in Russia. 2015;12(3):63-70. (In Russ.) https://doi.org/10.18008/1816-5095-2015-3-63-70


Контент доступен под лицензией Creative Commons Attribution 4.0 License.

Глаукомная оптическая нейропатия

За последние десятилетия офтальмология достигла значительных успехов в лечении глаукомы, тем не менее данное заболевание продолжает оставаться второй после катаракты причиной слабовидения и слепоты среди населения. По оценке Всемирной организации здравоохранения, в 2010 году численность больных глаукомой в мире составляла около 60 млн человек. По данным Quigley H.A., к 2020 году прогнозируется увеличение данного числа до 80 млн человек.

Согласно современным представлениям, глаукома рассматривается как мультифакторное нейродегенеративное заболевание, характеризующееся развитием и прогрессированием глаукомной атрофии зрительного нерва (ЗН) с потерей зрительных функций, независимо от уровня внутриглазного давления (ВГД). Глаукома характеризуется проградиентным течением и нарастанием структурных и функциональных изменений зрительной системы, с преимущественным поражением нейроретинального комплекса.

Механизмы развития глаукомной оптической нейропатии (ГОН) во многом сходны с таковыми при заболеваниях центральной нервной системы, например, болезни Альцгеймера. Однако патогенез глаукомного поражения изучен далеко не полностью. Существующие на сегодняшний день теории многообразны и нередко противоречивы. Особый интерес представляют три основные концепции: сосудистая, метаболическая и биомеханическая.

  • Сторонники сосудистой концепции ГОН полагают, что повышение ВГД сопровождается нарушением циркуляции кровотока в тканях глазного яблока с развитием ишемии зрительного нерва и гибелью ганглионарных клеток сетчатки и их аксонов.
  • В метаболической концепции в качестве ведущих факторов развития и прогрессирования глаукомной атрофии ЗН рассматривается повреждающее действие глутамата и продуктов свободно-радикального окисления. Метаболические нарушения, тесно связанные с ишемией нервной ткани, индуцируют апоптоз и некроз ганглионарных клеток сетчатки.
  • Согласно биомеханической концепции, основным фактором развития и прогрессирования ГОН является компрессия аксональных пучков нервных волокон деформированной решетчатой мембраной склеры с нарушением в них аксоноплазматического тока, что ведет к дефициту нейротрофических факторов и в конечном итоге к гибели нейронов.

На сегодняшний день малоизученным остается вопрос о роли внутренней пограничной мембраны сетчатки в формировании глаукомной атрофии диска зрительного нерва (ДЗН). Однако считается, что именно механическое воздействие пограничной мембраны на преламинарный отдел ДЗН является одним из факторов развития и прогрессирования ГОН. В условиях повышенного офтальмотонуса возникает аномально высокий градиент давления по обе стороны пограничной мембраны, вследствие чего она куполообразно продавливается в сторону решетчатой пластинки. Это приводит к сдавлению аксонов ганглионарных клеток сетчатки с последующей блокадой в них аксоноплазматического тока. Это «эффект плоскостного давления».

Также установлено, что изменения при ПОУГ происходят не только в сетчатке и диске зрительного нерва, но и на протяжении всего зрительного пути. При морфологических исследованиях головного мозга животных с экспериментальной глаукомой установлена выраженная атрофия латеральных коленчатых тел, причем степень выраженности атрофии напрямую зависит от длительности офтальмогипертензии и соответствует клиническим изменениям в диске зрительного нерва.

Роль оксида азота

Рядом с общепринятыми механическими и сосудистыми факторами патогенеза ГОН значительная роль отводится метаболическим нарушениям, среди которых ведущее место занимает дисрегуляция метаболизма оксида азота (NO). Как оказалось, этот короткоживущий газ вырабатывается в организме ферментативным путем из аминокислоты L-аргинина и участвует в регуляции практически всех функций организма.

В тканях глаза выявлены все изоформы NO-синтазы (NOS) — фермента, под воздействием которого синтезируется оксид азота: эндотелиальная (еNOS), нейрональная (nNOS), макрофагальная, или индуцибельная (іNOS).

  • Эндотелиальная NOS присутствует в эндотелии сосудов хориоидеи и сетчатки, в стенках коротких и задних цилиарных артерий, преламинарной области диска зрительного нерва.
  • Нейрональная NOS выявлена в периваскулярных зонах нервных волокон зрительного нерва.
  • В местах дезорганизации решетчатой пластины отмечено накопление макрофагальной NOS, появление которой характерно преимущественно для патологических состояний.

Экспериментальные исследования показали, что NO играет важную роль в регуляции кровообращения микроциркуляторного русла внутренних оболочек глаза и диска зрительного нерва, координации транспорта водянистой влаги через дренажную систему, влиянии на механизм нейронального апоптоза. Все это дало основание предполагать, что NO может принимать участие в развитии ГОН.

При глаукоме потеря зрения отражает гибель ретинальных ганглиозных клеток. При этом низкие дозы NO способны играть защитную роль для фоторецепторов. При выработке в больших количествах NO опосредует гибель нервных и фоторецепторных клеток в результате воздействия на них нейротоксического и высокореакционного соединения — пероксинитрита (ООNO–), образовавшегося в результате реакции NO со свободным радикалом супероксиданноном (О2–). Таким образом, NO может оказывать как положительное, так и отрицательное влияние на развитие и течение первичной открытоугольной глаукомы (ПОУГ). Во многом это зависит от уровня NO.

Конкретная физиологическая и патофизиологическая роль NO в генезе глаукомы до конца не изучена. Отсутствие точного понимания детальных механизмов участия NO в патогенезе глаукомы связано как с многогранностью этого заболевания, так и с трудностью изучения содержания NO в тканях глаза в силу его физико-химических особенностей. Использовать прямые количественные методы изучения NO іn vіvo, а в некоторых случаях и іn vіtro технически очень сложно. Поэтому в настоящее время наиболее распространено косвенное исследование содержания NO по уровню стабильных продуктов его метаболизма — нитрит (NO2 –)- и нитрат (NO3 –)-анионов. В единичных работах был изучен уровень NO в слезной, внутриглазной жидкости и плазме крови на разных стадиях ПОУГ. Но нет сведений о том, существует ли корреляционная связь между показателями NO в водянистой влаге, сыворотке крови и слезной жидкости на разных стадиях этой болезни у пациентов разного пола, отсутствуют и данные о медикаментозной коррекции нарушенных уровней NO.

Стадии поражения зрительного нерва

У пациентов первой стадии произошло незначительное нарастание объема глобальной потери (GLV %) ганглиозного комплекса сетчатки, достоверно не отличающегося от показателей пациентов латентной стадии заболевания. Компенсация ВГД приводит к кардинальному перераспределению показателей, характеризующих функциональное состояние сетчатки. Снижение ВГД сопровождается нормализацией показателей центральной периметрии, ПЭРГ, что свидетельствует об их функциональной преходящей депрессии на фоне повышенного ВГД. В то же время у пациентов на этой стадии выявляется нарастающее статистически достоверное снижение индексов SWAP-периметрии, что может быть обусловлено угнетением функциональной активности S-ганглиоцитов, отличающихся широкими рецептивными полями.

Читайте также:  Карабас бар Это просто праздник какой-то!

Вторая стадия глаукомы характеризуется нарастанием морфологических изменений ДЗН, включением в уравнение канонической величины всех показателей, характеризующих состояние комплекса ганглиозных клеток, значимым снижением толщины СНВ, а также увеличением размеров глаукомной экскавации. У пациентов этой группы наблюдалось снижение индексов всех видов компьютерной периметрии. В то же время объективные исследования функционального состояния ганглиозного комплекса сетчатки с помощью ПЭРГ значимых изменений не проявляют. Превышение толерантного уровня ВГД в первую очередь сопровождается уменьшением объема ганглиозного комплекса сетчатки. Обратимая функциональная депрессия фоторецепторов и ганглиоцитов, расположенных преимущественно в центральной – аваскулярной – зоне сетчатки, отсутствие изменений в толщине СНВ, представленных в основном аксонами ганглиозных клеток, позволяют предположить, что формирование глаукомной нейропатии начинается с деформации дендритов ГК, основным критерием изменения которых является увеличение объема глобальной потери ганглиозного комплекса сетчатки (GLV %).

На следующем этапе в патологический процесс включаются аксоны ганглиоцитов, как правило, в первую очередь именно тех клеток, которые имеют большие рецептивные поля (разветвленные дендриты), т.е. S-клеток, преимущественно расположенных в проекции зоны Бьеррума. Сокращение дендритных полей может задолго предшествовать гибели ганглиозных клеток и нервных волокон и определять изменение толщины всего комплекса ганглиозных клеток сетчатки . Эта теория получила название теории дендритных полей. Таким образом, можно сказать, что модель глаукомной дегенерации у человека также начинается с изменения дендритов, на следующем этапе сопровождается повреждением аксонов с последующим включением в патологический процесс непосредственно ганглиоцитов, что подтверждается их абсолютным функциональным дефицитом на развитых стадиях глаукомы.

Лечение

Современные методы лечения глаукомы направлены, преимущественно, на снижение ВГД, что является непременным условием стабилизации глаукомного процесса. Однако ухудшение зрительных функций даже при эффективном снижении офтальмотонуса позволяет предположить, что развивающиеся структурные нарушения в ЗН связаны не только с повышением ВГД. Следовательно, лечебные мероприятия, направленные только на нормализацию ВГД, вряд ли следует считать единственно результативными. Терапия глаукомы должна быть комплексной, направленной на устранение, по возможности, основных причин (механических, дисциркуляторных, метаболических) развития атрофии ЗН. Предотвращение гибели нейрональных клеток является столь же важной задачей лечения ГОН, как и нормализация ВГД. Одним из направлений, обеспечивающих решение данной задачи, является декомпрессионная хирургия глаукомы.

Нейропротекторная терапия

Центральные нейродегенеративные изменения зрительного пути вносят свой существенный вклад в патофизиологические механизмы глаукоматозного прогресса, а методы лечения, сочетающие гипотензивную и нейропротекторную терапию, направлены на защиту периферических и центральных зрительных нейронов и сохранение зрительных функций.

Нейротрофические факторы (НТФ) – семейство крупных полипептидов, которые регулируют выживание, развитие и функцию нейронов. Секретируемые нейрональными структурами (нейронами, глией), они выполняют сигнальную миссию в большом спектре физиологических процессов. НТФ осуществляют структурную и функциональную организацию как отдельных клеток мозга, так и нейрональной сети в целом, являясь регуляторами нейрональной пластичности.

Одна из основных функций НТФ связана со способностью противостоять окислительному стрессу и апоптозу. В современной офтальмологической практике наибольшее распространение получили цитомедины или пептидные биорегуляторы, являющиеся индукторами эндогенных пептидов. Для лечения ГОН широко используются такие препараты данной фармакологической группы, как кортексин и ретиналамин. Обладая низкой молекулярной массой (не более 10 кДА), они проникают через гематоэнцефалический и гематоофтальмический барьеры и поступают непосредственно к нейронам.

  • Кортексин – комплекс полипептидов, полученный методом уксуснокислой экстракции из коры головного мозга крупного рогатого скота и свиней. Препарат обладает тканеспецифическим действием на серое вещество головного мозга, а также регулирует процессы метаболизма в нейронах сетчатки и ЗН.
  • Ретиналамин – комплекс водорастворимых пептидных фракций, полученный методом уксуснокислой экстракции из сетчатки глаз крупного рогатого скота. Лекарственное средство обладает тканеспецифическим действием на сетчатку, регулирует процессы метаболизма, улучшает функциональную активность клеточных элементов ретинальной ткани, стимулирует репаративные процессы в сетчатке, а также нормализует проницаемость сосудов глазного яблока.

Немаловажным в нейропротекции при ГОН является и способ доставки лекарственного вещества.

Кортексин рекомендуется вводить внутримышечно в дозе 10 мг в течение 10 дней, а ретиналамин – внутримышечно и парабульбарно в дозе 5 мг в течение 10 дней. Однако подобные способы введения не обеспечивают оптимальную концентрацию лекарственного вещества в области ДЗН, что связано с анатомическими особенностями глазного яблока. При парабульбарном введении препарата до ретинальной ткани доходит лишь 9,3% от введенной дозы. Кроме того, при этом возможны такие осложнения, как перфорация глазного яблока, парабульбарные гематомы.

В последнее время большое распространение получили методики введения лекарственных средств при помощи физиотерапевтических процедур. Так, широко применяется метод эндоназального электрофореза ретиналамина и кортексина, основанный на использовании постоянного тока. Раствор ретиналамина 0,25% вводится с активного положительного электрода, установленного в средних носовых ходах (сила тока 0,5–1 мА). Продолжительность процедуры – от 3 до 15 минут. Курс лечения – 10 процедур. Эндоназальный электрофорез 0,25% раствором кортексина проводится аналогичным способом. Несомненными преимуществами данного неинвазивного метода лечения являются отсутствие болевых ощущений и риска развития осложнений, связанных с инъекционным введением препаратов.

Для ретиналамина разработано большое количество альтернативных путей введения: субконъюнктивально, в субтеноново пространство, ретробульбарно, под кожу виска и др. Проведены исследования по применению данного препарата путем субконъюнктивальных инъекций (ретиналамин растворяли в 2 мл 2% лидокаина, под конъюнктиву вводили 1 мл полученного раствора; курс лечения – 10 инъекций). Одновременно пациенты получали 1,0 мл раствора ретиналамина в/м и стандартную сосудистую терапию (эмоксипин, АТФ, милдронат). Клинически значимые результаты в виде улучшения зрительных функций и стабилизации глаукомного процесса были получены через 3, 6 и 12 месяцев.

Эффективным оказалось применение ретиналамина при ретробульбарном и субтеноновом введении. Пациентам с компенсированным ВГД данный препарат вводился ретробульбарно в дозе 5 мг ежедневно в течение 10 дней. Пациентам с декомпенсированным офтальмотонусом ретиналамин вводился под тенонову капсулу однократно в сочетании с антиглаукомной операцией. По результатам исследования выявлена положительная динамика клинических показателей с повышением амплитуды зрительных вызванных потенциалов.

Хирургия

Известен способ лечения ГОН, заключающийся в проведении трансвитреальной декомпрессии склерального канала ЗН путем дисцизии склерального кольца ножом Сато на глубину до 1 мм со стороны ДЗН в меридианах 11 (1) или 5 (7) часов через сквозные разрезы склеры. Однако он имеет существенные недостатки: высокую вероятность повреждения ЗН, риск развития гемофтальма, эндофтальмита.

Другой хирургический способ лечения ГОН заключается в проведении субтотальной витрэктомии с последующим введением в витреальную полость суспензии кортикостероида для контрастирования задней гиалоидной мембраны, которую максимально полно удаляют. Далее производится радиальная оптическая нейротомия путем надреза склерального кольца в бессосудистой зоне ДЗН с его назальной стороны на глубину 0,5–0,8 мм. Затем производится тампонада витреальной полости перфторорганическим соединением сроком на 7 дней с последующей его заменой на физиологический раствор, содержащий 5 мг ретиналамина. Недостатки: большой объем вмешательства, вероятность повреждения ЗН, риск развития гнойных и геморрагических осложнений, длительный восстановительный период.

Также был разработан метод декомпрессионного хирургического лечения ГОН у больных с далеко зашедшей и терминальной стадиями первичной открытоугольной глаукомы (ПОУГ), основанный на трансвитреальной дисцизии внутренней пограничной мембраны сетчатки над ДЗН. К преимуществам данного способа относятся: низкий риск повреждения ЗН, развития таких осложнений, как эндофтальмит и гемофтальм, возможность проведения данной операции в амбулаторных условиях.

Клеточная терапия

Другим альтернативным или дополнительным методом патогенетически обоснованного лечения оптической нейропатии при глаукоме может стать клеточная терапия. Так в работе Crigler L. и соавт. (2006) показана возможность выделения мультипотентными мезенхимными стволовыми клетками (ММСК) большого количества разнообразных сигнальных нейрогенных факторов, в том числе нейротрофических.

Существование большого количества методик, применяемых для лечения глаукомной оптической нейропатии, каждая из которых имеет свои преимущества и недостатки, свидетельствует о нерешенности данной проблемы. В связи с этим перспективным представляется разработка принципиально новых, патогенетически ориентированных, комбинированных методов лечения, устраняющих как компрессионное повреждение волокон зрительного нерва, так и оказывающих эффективное нейропротекторное действие, благодаря созданию локально высокой (вблизи ДЗН и сетчатки) концентрации необходимого фармакологического препарата.

Ссылка на основную публикацию
ЭКО в естественном цикле — оплодотворение без стимуляции
ЭКО в естественном цикле Рождение первого ребенка после ЭКО стало возможным, благодаря проведенной процедуре ЭКО в естественном цикле. С 1978...
Шишка за ухом причины появления, разновидности, лечение, фото
Появление шишки за ухом у взрослого Многих пациентов заставляет нервничать такая мелочь как шишка за ухом – вскочившее уплотнение у...
Шишка за ухом у ребенка что это, причины появления, что делать
Шишка за ухом: что делать? Уплотнение около ушной раковины появляется внезапно как у детей, так и у взрослых. Оно постепенно...
ЭКО, стволовые клетки и опухоль мозга Заворотнюк
Опасные союзники: стволовые клетки могут запустить развитие опухоли Сейчас стволовые клетки в России разрешено применять для лечения некоторых заболеваний. Запрет...
Adblock detector