Фотосинтетические пигменты - ФОТОСИНТЕЗ - СТРОЕНИЕ РАСТИТЕЛЬНОЙ КЛЕТКИ - КЛЕТКА

Фотосинтетические пигменты — ФОТОСИНТЕЗ — СТРОЕНИЕ РАСТИТЕЛЬНОЙ КЛЕТКИ — КЛЕТКА

Фотосинтетические пигменты находятся

В муссонных тропических лесах Вьетнама четко выделяются два сезона: влажный и сухой. Во время влажного сезона выпадает до 85 % годовой суммы осадков [2]. Такие резкие вариации климатических условий в течение года приводят к необходимости растений адаптироваться к изменению условий произрастания. Изменение гидрологических условий в течение года вызывает изменения в количестве и составе фотосинтетических пигментов [9], которые влияют на фотосинтетические свойства и, следовательно, на накопление биомассы растений.

Однако эта сезонная контрастность в условиях водного режима не оказывает большого влияния на условия освещенности под пологом леса. Виды, растущие в этих затененных условиях, относятся к разным жизненным формам и их можно разделить на две основные группы: одни находятся в этих условиях в течение всего онтогенеза, а другие – только на ранних этапах.

Таким образом, на начальных этапах онтогенеза растениям тропического леса необходимо адаптироваться одновременно к двум стрессовым факторам: низкой освещенности и изменению гидрологических условий в течение года. Вопрос о путях адаптации в условиях сезонного изменения климата тропического леса остается открытым и, прежде всего, это касается фотосинтетического аппарата. Вклад видов в общий годичный углеродный баланс будет определяться их функциональной активностью в разные сезоны года.

Целью нашей работы было сравнительное изучение сезонной динамики содержания фотосинтетических пигментов в листьях растений разных жизненных форм, произрастающих под пологом тропического леса.

Материал и методы исследования

Исследование было проведено в южном Вьетнаме в национальном парке «Кат Тиен» (11° с.ш., 107° в.д.). Территория Вьетнама согласно классификации климатов Б.П. Алисова (классификация по режиму циркуляции воздушных масс – см. [Хромов, Петросянц, 2001]) относится к субэкваториальному климату (климат экваториальных муссонов). Во время влажного сезона, длящегося с мая по октябрь, выпадет до 85 % годовой нормы осадков (рисунок). Среднегодовая температура воздуха составляет 26,4°С [2]. Освещенность под пологом леса на высоте 1 м составляет менее 1 % от освещенности открытого места.

Сезонная динамика суммарных осадков (мм*сут-1) в национальном парке «Кат Тиен» в 2012 г.

Объектами исследования были растения двух разных жизненных форм:

– деревья: Lagerstroemia calyculata Kurz. (Lythraceae) – подрост верхнего яруса, Pterospermum sp. (Sterculiaceae) – подрост второго-третьего яруса, Phyllantus sp. (Euphorbiaceae) – вид нижнего яруса;

– лианы: Ancistrocladus tectorius (LOUR.) MERR. (Ancistrocladaceae), Dalbergia sp. (Fabaceae), Calamus sp. (Arecaceae). Ancistrocladus tectorius и Dalbergia sp. могут достигать высоты деревьев второго подъяруса, Calamus sp. выносит крону на высоту крон деревьев третьего и четвертого подъярусов (Кузнецов, 2003).

Содержание фотосинтетических пигментов определяли один раз в месяц в течение влажного (август – сентябрь 2011 г.) и сухого (декабрь – март 2011–2012 гг.) сезонов. Пробы листьев брали с 3 растений (по 5 листьев с каждого растения) из средней части кроны в 11–12 ч (местное время). Образцы помещали в темные полиэтиленовые пакеты со льдом и доставляли в лабораторию. Анализ проводили в день сбора. Пигменты экстрагировали 96 % этанолом. Оптическую плотность экстракта определяли на спектрофотометре (APEL, PD-303, Япония). Содержание пигментов рассчитывали по формулам, представленным в работе Wintermans и De Mots [12]. Размер светособирающего комплекса (ССК) был рассчитан с предположением, что весь хлорофилл b входит в ССК и соотношение ХЛ a/b в ССК равно 1,2 [8]. Для каждого показателя фотосинтетического аппарата было рассчитано среднее арифметическое значение для каждого сезона. Данные обработаны с помощью дисперсионного анализа с использованием программы STATISTICA [2].

Результаты исследования и их обсуждение

Проведенные исследования по содержанию пигментов показали, что содержание суммы хлорофиллов варьируется у всех исследованных видов в сухой сезон от 7,0 мг/г (Pterospermum sp) до 10,2 мг/г (Dalbergia sp); во влажный сезон диапазон варьирования составляет от 7,8 мг/г (Calamus sp.) до 12,5 мг/г (Dalbergia sp). Изменения в содержании каротиноидов составляют в сухой сезон от 0,9 мг/г (Pterospermum sp) до 1,5 мг/г (Dalbergia sp), во влажный – от 1,1 мг/г (Calamus sp) до 1,7 мг/г (Dalbergia sp.) (табл. 1, 2). Отношение хлорофилла a к хлорофиллу b (ХЛ a/b) отличалось незначительно у изученных видов и варьировалось в сухой сезон от 1,6 (Ancistrocladus sp.) до 1,9 (Calamus sp.); во влажный – от 1,9 (Ancistrocladus sp.) до 2,2 (Calamus sp., Phyllantus sp.). Следует отметить высокие отношения суммы хлорофиллов к каротиноидам (ХЛ/каротиноиды): в сухой сезон от 6,9 (Dalbergia sp.) до 8,1 (Ancistrocladus sp.); во влажный сезон – от 6,2 (Phyllantus sp.) до 7,2 (Dalbergia sp.). Все виды имели высокое значение ССК: в сухой сезон – от 77 (Calamus sp.) до 87 % (Ancistrocladus sp.), во влажный сезон – от 69 (Phyllantus sp.) до 75 % (Ancistrocladus sp.) (табл. 1, 2).

Содержание фотосинтетических пигментов (мг/г сухой массы) и их соотношения в течение сухого сезона

Вид, жизненная форма

Lagerstroemia sp., дерево

Pterospermum sp., дерево

Phyllantus sp., дерево

Средние значения для жизненной формы дерево

Calamus sp., лиана

Ancistrocladus sp., лиана

Dalbergia sp., лиана

Средние значения для жизненной формы лиана

Содержание фотосинтетических пигментов (мг/г сухой массы) и их соотношения в течение влажного сезона

Вид, жизненная форма

Lagerstroemia sp., дерево

Pterospermum sp., дерево

Phyllantus sp., дерево

Средние значения для жизненной формы дерево

Calamus sp., лиана

Ancistrocladus sp., лиана

Dalbergia sp., лиана

Средние значения для жизненной формы лиана

Сравнение показало, что содержание пигментов между видами достаточно сходное и не зависит от жизненной формы; среднее содержание пигментов (хлорофилла а и суммы каротиноидов) во влажный сезон увеличивается, хотя реакция отдельных видов различается.

Анализ полученных данных по отдельным видам показал, что их реакция по содержанию пигментов на изменение гидрологического режима различается, и можно выделить две группы видов: у первой группы содержание пигментов достоверно различается в разные сезоны, у второй – изменяется незначительно или эти изменения отсутствуют (табл. 1, 2). К первой группе относятся два древесных вида: Lagerstroemia sp., Pterospermum sp. и две лианы: Ancistrocladus sp., Dalbergia sp. Для этих видов была выявлена зависимость содержания фотосинтетических пигментов от сезона года: содержание хлорофилла а во влажный сезон увеличивается у деревьев на 19, 42, у лиан – на 18, 24 % соответственно, а каротиноидов у деревьев на 25, 44, у лиан – на 30, 15 % соответственно по видам.

Ко второй группе относятся два вида – Phyllantus sp. (дерево) и Calamus sp. (лиана). У этих видов содержание фотосинтетических пигментов изменяется незначительно (по всем показателям в пределах 10 %). Эти данные поддерживаются и результатами дисперсионного анализа (табл. 3), где достоверная связь разной степени прочности отмечается в основном у видов первой группы.

Проведенный анализ показал, что все найденные характеристики пигментного аппарата (относительно высокие значения содержания суммы хлорофиллов и низкие каротиноидов, низкие значения соотношения ХЛ a/b, высокие значения соотношения ХЛ/car и высокие значения ССК) соответствуют растениям теневых местообитаний, в которых ведущим фактором являются условия освещения [6, 10,13]. Сходные значения содержания фотосинтетических пигментов у видов, растущих под пологом муссонного тропического леса в разные сезоны года, свидетельствуют о том, что ведущим фактором, определяющим развитие растений на начальных этапах онтогенеза, являются условия освещенности. К этому же заключению приходит в своих работах Schnitzer, который отмечает, что основным фактором во влажных тропических лесах, определяющим развитие растений независимо от сезона является свет [11].

Читайте также:  Аллергический бронхолёгочный аспергиллёз - причины, симптомы, диагностика и лечение

Анализ зависимости содержания фотосинтетических пигментов от сезона года

Нами не было найдено различий в содержании фотосинтетических пигментов между лианами и деревьями, что согласуется с данными, полученными Sanchez-Azofeifa с соавторами [10], которые также не обнаружили разницы в содержании хлорофиллов, каротиноидов и отношении ХЛ/car в листьях лиан и деревьев во влажных тропических лесах. Но эти авторы работали со взрослыми деревьями и лианами, и это условие усложняет однозначную интерпретацию.

У четырех (Lagerstroemia sp., Pterospermum sp., Ancistrocladus sp., Dalbergia sp.) изученных нами видов было найдено значительное изменение содержания фотосинтетических пигментов в сезонной динамике. Подобные результаты получены в работе Morais с соавторами [9], которые обнаружили увеличение содержания хлорофиллов во влажный сезон по сравнению с сухим у деревьев, произрастающих в сельве Амазонки. Особого внимания заслуживает факт увеличения содержания каротиноидов во влажный сезон, что, по мнению Frank с соавторами [7], способствует не только защите фотосинтетического аппарата от окислительного стресса [5], но и большему поглощению света. Увеличение ХЛ a/b, которое отмечается в нашей работе во влажный сезон, свидетельствует о повышении способности растений к поглощению света низкой интенсивности. Однако увеличение поглощения световой энергии должно сопровождаться ее более эффективным использованием в фотохимических реакциях. В нашей работе мы отмечаем только повышение содержания хлорофилла a, что, с большой долей вероятности, может быть связано с увеличение числа реакционных центров и, значит, с увеличением эффективности использования световой энергии. Результатом наблюдаемых изменений работы фотосинтетического аппарата может быть ускорение роста и развития растений и повышение их продуктивности. Это дает основание еще для одной гипотезы: в условиях влажного сезона снижается нагрузка на антиоксидантные системы, что и может быть причиной увеличения содержания хлорофилла а и эффективности фотохимических реакций фотосинтеза.

Полученные нами данные о сходстве реакции растений разных жизненных форм представляют большой интерес. Это прежде всего связано со сходством реакции пигментного аппарата растений видов разных жизненных форм на условия освещенности подлеска при отсутствии водного дефицита и при его наличии. В нашей предыдущей работе по водному режиму [1] также было показано существование двух групп видов в зависимости от факторов среды, и данные нашего исследования подтвердили наше заключение относительно того, что такие виды, как Ancistrocladus sp., Pterospermum sp., и Lagerstroemia sp., зависят от изменения факторов среды при переходе от сухого к влажному сезону. Наиболее значимые изменения в параметрах фотосинтетического аппарата были обнаружены у Pterospermum sp., у которого ведущим экологическим фактором является освещенность, и в ответ на изменение условий увлажнения этот вид наиболее значимо изменяет параметры фотосинтетического аппарата. Этот вид в отличие от Lagerstroemia sp. – доминанта этого типа леса, может выйти на более высокий ярус только в том случае, если появятся специальные условия, поскольку он не является исходно доминантом этих лесов. Виды второй группы, сохраняющие параметры фотосинтетического аппарата в течение годичного цикла, входят в группу видов с широкой экологической амплитудой и системами эндогенной регуляции основных физиологических процессов. Так, было показано, что Calamus sp. способен к системной регуляции водного режима, что и может обеспечить относительную стабильность его пигментного аппарата в обоих сезонах вегетации [1].

Выявленные различия между видами свидетельствуют о различных взаимоотношениях изученных видов с факторами среды. Таким образом, для видов муссонного тропического леса можно выделить два типа реакции на изменение факторов среды – лабильных и стабильных типов растений, что, как показало исследование, не зависит от жизненной формы, а определяется их исходной стратегией.

Результаты исследования показали, что независимо от жизненной формы основным фактором в муссонных тропических лесах, оказывающим влияние на развитие растений на начальных этапах онтогенеза, является свет. Нами не было выявлено разницы в содержании фотосинтетических пигментов и их отношениях между двумя жизненными формами как в сухой, так и во влажный сезоны. В то же время в зависимости от ответа растений на изменение гидрологических условий произрастания в течение года было выделено две группы растений – лабильных и стабильных типов растений. У лабильных растений (Lagerstroemia sp., Pterospermum sp., Ancistrocladus sp., Dalbergia sp.) наблюдаются значительные изменения в содержании фотосинтетических пигментов в течение года, что может приводить к изменению скорости роста и развития и повышению продуктивности растений. Для растений второй группы (Ancistrocladus sp., Dalbergia sp.) характерна относительная стабильность характеристик фотосинтетического аппарата, что может быть связано с эндогенной регуляцией основных физиологических процессов, в том числе с регуляцией водного режима.

Авторы выражают благодарность руководству Российско-Вьетнамского Тропического центра и администрации национального парка «Кат Тиен» за возможность проведения исследований.

Исследования выполнены в рамках плановой темы Совместного Российско-Вьетнамского Тропического научно-исследовательского и технологического центра, а также при финансовой поддержке РФФИ в рамках проекта № 12-04-31234 и при поддержке Программы стратегического развития (ПСР) ПетрГУ в рамках реализации комплекса мероприятий по развитию научно-исследовательской деятельности на 2012–2016 гг.

Рецензенты:

Кособрюхов А.А., д.б.н., старший научный сотрудник, руководитель группы экологии и физиологии фототрофных организмов Института фундаментальных проблем биологии РАН, г. Пущино;

Шмакова Н.Ю., д.б.н., руководитель сектора экофизиологии растений Полярно-альпийского ботанического сада-интитута им. Н.А. Аврорина Кольского научного центра РАН, г. Кировск.

Фотосинтетические пигменты

Смотрите также:

Жизнь на Земле возможна благодаря световой (главным образом, солнечной) энергии, которая преобразуется в энергию химических связей органических веществ, образующихся в процессе фотосинтеза. Фотосинтезом обладают все растения и некоторые прокариоты (фотосинтезирующие бактерии и сине-зеленые водоросли — цианобактерии). Организмы, способные к фотосинтезу, называются фототрофами.

У высших растений побег развился как орган воздушного питания. Поэтому, наряду с размножением, его основной функцией является обеспечение всего растительного организма органическими веществами, образованными в процессе фотосинтеза (греч. phos, photos — свет, synthesis — соединение, сочетание, составление). Этот процесс представляет собой сложную цепь реакций, в результате которых из углерода и водорода, полученных из неорганических источников, образуются органические соединения. Для нормального течения этих реакций необходима энергия. Растения получают ее от падающего света, что и дало название всему процессу. Свет улавливается особыми молекулами, которые получили название фотосинтетических пигментов (лат. pigmentum — краска). О них следует рассказать подробнее.

Фотосинтетические пигменты

Они представлены молекулами, способными поглощать кванты (нем. Quantum — количество, лат. quantum — сколько) света. Поскольку при этом поглощается свет лишь определенной длины волны, часть световых волн не поглощается, а отражается. В зависимости от спектрального состава отраженного света пигменты приобретают окраску — зеленую, желтую, красную и др. В настоящее время различают три класса фотосинтетических пигментов — хлорофиллы1, каротиноидыь и фикобилины1.

Читайте также:  Названы первые симптомы рака легких Новости Известия

Самым распространенным и наиболее важным фотосинтетическим пигментом является хлорофилл (греч. chloros — зеленоватый, phyllon — лист), который имеется практически у всех фототрофов. Основой является плоское порфириновое ядро, образованное СН2 четырьмя пиррольными кольцами, соединенными меж- НС-СН3 ду собой метиновыми мостиками, с атомом магния в СН2 центре ( 43).

В порфириновом ядре, кроме собственно пиррола, содержатся также его изомер — пир- роленин и продукт неполного восстановления пирро- I 2 ла — пирролин. Поскольку в этих циклических соеди- НС-СН3 нениях, помимо атомов углерода, присутствует гете- СН2 роатом (греч. heteros — другой) — азот, они называются СН2 гетероциклическими. Наличие двойных связей позволя- СН ет отнести их к ненасыщенным гетероциклам. Атомы СН^СН3 углерода, расположенные в гетероцикле рядом с гетеро- атомом — азотом, обозначаются как а-атомы, а удаленные от него — Д-атомы. Поскольку все связи а-углеродных атомов в молекуле хлорофилла заняты в формировании порфиринового кольца, они не определяют специфику различных видов хлорофилла, эту функцию выполняют Д-углеродные атомы. Сами атомы азота взаимодействуют с расположенным в центре ядра атомом металла — магнием (отметим, что у близкого по строению гема, входящего в состав гемоглобина, миоглобина или цитохрома, в центре ядра находится атом железа). Так как в порфириновом ядре имеются многочисленные двойные связи, там присутствуют делокализованные (более подвижные) ж-электроны, которых в ядре насчитывается 18. Позднее мы расскажем о значении таких электронов для фотосинтеза.

Фитол относится к дитерпенам, основу которых составляют остатки изопрена.

Такая структура молекулы определяет свойства хлорофилла — гидрофобный фитольный «хвост» надежно удерживает молекулу в гидрофобной части мембраны тилакоида хлоропласта, а гидрофильное порфириновое ядро обращено к строме хлоропласта. При этом само ядро ориентировано параллельно мембране, в которой находится хлорофилл.

Синтез хлорофилла довольно сложен и включает в себя 15 реакций, которые можно разделить на три этапа. Исходными веществами для синтеза хлорофилла являются глицин и ацетат. На первом этапе образуется 5-аминолевулиновая кислота. На втором этапе происходит синтез одной молекулы протопорфирина из четырех пир- рольных колец.

Третий этап представляет собой образование и превращение магнийпорфиринов.

Все низшие и высшие растения, а также цианобактерии содержат различные хлорофиллы1 типа а. У высших растений, зеленых и эвгленовых водорослей имеется хлорофилл b (он образуется из хлорофилла а), который отличается от хлорофилла а присутствием формильной группы -СНО, вместо метильной (-СН3) у третьего атома углерода. Бурые и диатомовые водоросли вместо хлорофилла b содержат хлорофилл с, не имеющий остатка фитола, а красные водоросли — хлорофилл d, который отличается от хлорофилла а тем, что при углеродном атоме 2 порфиринового кольца вместо винильной группы имеется формильный радикал. Хлорофиллы бактерий имеют некоторые специфические особенности и называются бактериохлорофиллами.

Молекулы хлорофиллов способны, взаимодействуя друг с другом и молекулами белков, создавать агрегированные формы, различающиеся по длине волн поглощенного света.

Хлорофилл а имеет два четко выраженных максимума поглощения — 660 — 663 нм и 428 — 430 нм. Хлорофилл b поглощает более короткие волны в красной части спектра и более длинные в синей. Его максимумы поглощения будут 642 — 644 нм и 452 — 455 нм соответственно. Все хлорофиллы слабо поглощают желтый и оранжевый свет, а зеленый они отражают, что и определяет зеленую окраску этого класса пигментов ( 44).

Смотрите также:

. центры фотосинтетической активности, в которых сосредоточены весь хлорофилл и все вспомогательные пигменты, связанные с фотосинтезом.
Митохондрии также содержат специфическую ДНК и аппарат белкового синтеза, а следовательно, и они, возможно.

Хлорофилл — главное действующее начало в осуществлении фотосинтеза.
Прежде всего вое фотосинтетические пигменты сосредоточены в специальных внутриклеточных образованиях — хлоропластах ( 9). Хлоропласты — это микроскопические

Фотосинтез. Несколько лет французские химики Пельтье (1788-1842) и Каванту (1795— 1877) работали вместе.
Вильштеттер (1872—1942), сын торговца текстилем, немецкий биохимик, свои научные интересы связал с растительными пигментами (хлорофилл — один из них).

В 1915 году за исследования хлорофилла и других пигментов ему присудили Нобелевскую премию по химии.
И наконец, синтез хлорофилла, на который было затрачено 4 года.
У бактерий, способных осуществлять фотосинтез, хлорофилл заключен в хроматофорах.

В отсутствие хлорофилла каротиноиды неспособны осуществлять фотосинтез, поэтому принято
В гранах хлоропластов у высших растений фотосинтетические пигменты именно так и
Синтез АТР, протекающий с использованием энергии видимой части солнечной радиации.

жирорастворимые пигменты — хлорофиллы и каротиноиды
Если допустить, что внешние причины не лимитируют фотосинтез, то КПД может уменьшиться в результате наследственно закрепленной недостаточной эффективности фотосинтетического аппарата листа или же.

Фотосинтетические пигменты находятся

9.3.2. Фотосинтетические пигменты

Фотосинтетические пигменты высших растений делятся на две группы — хлорофиллы и каротиноиды. Роль этих пигментов состоит в том, чтобы поглощать свет и превращать его энергию в химическую энергию. Пигменты локализованы в мембранах хлоропластов, и хлоропласты обычно располагаются в клетке так, чтобы их мембраны находились под прямым углом к источнику света, что гарантирует максимальное поглощение света. В табл. 9.4 перечислены пигменты, характерные для различных групп растений.


Таблица 9.4. Главные фотосинтетические пигменты, их цвет и распространение

Хлорофиллы

Хлорофиллы поглощают главным образом красный и сине-фиолетовый свет. Зеленый свет они отражают и потому придают растениям характерную зеленую окраску, если только ее не маскируют другие пигменты. На рис. 9.9 показаны спектры поглощения хлорофиллов a и b — для сравнения — спектр каротиноидов.


Рис. 9.9. Спектры поглощения хлорофиллов a и b и каротиноидов

Для хлорофиллов характерно наличие порфиринового кольца (рис. 9.10). Такая же структура имеется и в других важных биологических соединениях — в геме гемоглобина, миоглобина и цитохромов. Порфириновое кольцо — это плоская квадратная структура, состоящая из четырех меньших колец (I-IV), каждое из которых содержит по одному атому азота, способному взаимодействовать с атомами металлов; в хлорофиллах это магний, в геме-железо. К такой «голове» присоединен длинный углеводородный «хвост» — сложноэфирная связь образуется между спиртовой группой (-ОН) на конце фитола и карбоксильной группой (-СООН) на самой голове. У разных хлорофиллов разные боковые цепи, и это несколько изменяет их спектры поглощения.


Рис. 9.10. Строение хлорофилла. Координационная связь: Х-СН3 — у хлорофилла а; -СНО — у хлорофилла b

Связь такой структуры с функцией можно описать следующим образом:

а) длинный хвост растворим в липидах (т. е. он гидрофобный) и таким образом удерживает молекулу в мембране тилакоида;

б) голова гидрофильная (т. е. обладает сродством к воде), и поэтому она обычно лежит на той поверхности мембраны, которая обращена к водной среде стромы;

в) для лучшего поглощения света плоскость головы расположена параллельно плоскости мембраны;

г) модификация боковых групп на голове приводит к изменениям в спектре поглощения, в результате чего меняется и количество поглощаемой энергии света;

д) поглощение световой энергии головой приводит к эмиссии электронов.

Хлорофилл а — фотосинтетический пигмент, представленный в наибольшем количестве; это единственный пигмент, который имеется у всех фотосинтезирующих растений и играет у них центральную роль в фотосинтезе. Существует несколько форм этого пигмента, которые различаются своим расположением в мембране. Каждая форма слегка отличается от других и по положению максимума поглощения в красной области; например, этот максимум может быть при 670, 680, 690 или 700 нм.

Читайте также:  AN26UREA, Мочевина показатели, норма - узнать цены на анализы для животных в Москве

9.6. Чем отличается спектр поглощения хлорофилла а от спектра поглощения хлорофилла b?

Каротиноиды

Каротиноиды — это желтые, оранжевые, красные или коричневые пигменты, которые сильно поглощают в сине-фиолетовой области. Обычно они замаскированы зелеными хлорофиллами, но хорошо выявляются перед листопадом, так как хлорофиллы в листьях распадаются первыми. Каротиноиды содержатся также в хромопластах некоторых цветков и плодов, яркая окраска которых служит для привлечения насекомых, птиц и других животных, участвующих в опылении цветков или распространении семян; например, красный цвет кожицы помидоров обусловлен присутствием одного из каротинов — ликопина.

Каротиноиды имеют три максимума поглощения в сине-фиолетовой области спектра (рис. 9.9); они не только функционируют как дополнительные пигменты, но и защищают хлорофилл от избытка света и от окисления кислородом, выделяющимся при фотосинтезе.

Каротиноиды бывают двух типов — каротины и ксантофиллы. Каротины — это углеводороды, большую часть которых составляют тетратерпены (С40-соединения). Самым распространенным и самым важным из них является β-каротин (рис. 9.11), который знаком всем как оранжевый пигмент моркови. Позвоночные животные способны в процессе пищеварения расщеплять молекулу каротина надвое с образованием двух молекул витамина А. Ксантофиллы по химическому строению очень сходны с каротинами и отличаются от них только тем, что содержат кислород.


Рис. 9.11. Строение β-каротина

Спектры поглощения и спектры действия

При изучении какого-либо процесса, активируемого светом, в частности фотосинтеза, очень важно знать спектр действия для данного процесса — тогда можно попытаться идентифицировать пигменты, которые в нем участвуют. Спектр действия — это график, показывающий эффективность стимулирующего действия света с различной длиной волны на исследуемый процесс, в нашем случае — на фотосинтез; эту эффективность можно оценивать, например, по образованию кислорода. Спектр поглощения — это график, отображающий относительное поглощение света с различной длиной волны тем или иным пигментом. Спектр действия для фотосинтеза показан на рис. 9.12, вместе с объединенным спектром поглощения всех фотосинтетических пигментов. Обратите внимание на большое сходство этих двух графиков: оно свидетельствует о том, что именно пигменты, и в частности хлорофилл, ответственны за поглощение света при фотосинтезе.


Рис. 9.12. Сравнение спектра действия фотосинтеза со спектром поглощения фотосинтетических пигментов

Возбуждение пигментов светом

Пигменты — это химические соединения, которые поглощают видимый свет, что приводит к переходу некоторых электронов в возбужденное состояние, т. е. эти электроны поглощают энергию. Чем меньше длина волны, тем выше энергия света и тем больше его способность переводить электроны в возбужденное состояние. Такое состояние обычно неустойчиво, и вскоре молекула возвращается в свое основное состояние (т. е. исходное низкоэнергетическое состояние), теряя при этом энергию возбуждения. Эта энергия может использоваться разными способами, в том числе на процесс, обратный поглощению света и называемый флуоресценцией. При этом часть энергии теряется в виде тепла, поэтому излучаемый свет имеет несколько большую длину волны (и меньшую энергию), чем поглощенный. Это можно увидеть, если сначала осветить раствор хлорофилла, а затем посмотреть на него в темноте.

Во время световых реакций фотосинтеза возбужденные пигменты теряют электроны, и на их месте в молекулах остаются положительные «дырки», например:

Всякий потерянный электрон будет принят другой молекулой — так называемым акцептором электрона, так что в целом это окислительно-восстановительный процесс (см. Приложение 1.2). Хлорофилл окисляется, а акцептор электрона восстанавливается. Хлорофилл служит здесь донором электрона.

Главные и вспомогательные пигменты

Фотосинтетические пигменты бывают двух типов — главные и вспомогательные. Пигменты второго типа передают испускаемые ими электроны главному пигменту. Электроны, испускаемые главными пигментами, непосредственно доставляют энергию для реакций фотосинтеза.

Существует два главных пигмента, это две формы хлорофилла а; их обозначают Р690 и Р700 (см. ниже). Сокращение Р означает «пигмент» (pigment). К вспомогательным пигментам относятся другие формы хлорофилла (в том числе все остальные формы хлорофилла а) и каротиноиды.

9.7. Поскольку энергию нельзя передавать со 100%-ной эффективностью, переход электрона от одной молекулы пигмента к другой должен сопровождаться некоторой потерей энергии в виде тепла. Хлорофилл b передает электроны на хлорофилл а. Можете ли вы сказать заранее, какой из этих хлорофиллов — а или b — обладает меньшей энергией возбуждения (т. е. энергией, необходимой для того, чтобы пигмент испустил электрон)?

Фотосинтетические единицы и реакционные центры

За последние двадцать лет мы многое узнали о расположении пигментов и связанных с ними молекул в мембранах тилакоидов. В настоящее время принято считать, что существует два типа фотосинтетических единиц, которые называют фотосистемами I и II (ФСI и ФСII). Каждая из этих единиц состоит из набора молекул вспомогательных пигментов, передающих энергию на одну молекулу главного пигмента. Последняя называется реакционным центром; в нем энергия света используется для осуществления химической реакции. Именно здесь происходит преобразование световой энергии в химическую, и именно оно является центральным событием фотосинтеза.

Судя по результатам биохимических и электронно-микроскопических исследований, каждая фотосистема содержит около 300 молекул хлорофилла. Препараты для электронной микроскопии приготовлялись методом замораживания-скалывания, который описан в Приложении 2.5; это один из хороших примеров успешного применения такого метода. Как видно на рис. 9.13, в мембранах тилакоидов имеются частицы двух типов, расположенные в определенном порядке; такие частицы называются квантосомами. Как полагают, более мелкие частицы составляют фотосистему I, а более крупные — фотосистему ΙΙ. Для каждого типа частиц характерен свой специфический набор молекул хлорофилла (рис. 9.14). Частицы фотосистемы II, по-видимому, в основном связаны с гранами. На рис. 9.14 схематически показано, как энергия (в виде возбужденных электронов) «переливается» со вспомогательных светособирающих пигментов на главный пигмент, который представлен особой формой хлорофилла а — пигментом Р690 или Р700 (в соответствии с максимумом поглощения в нанометрах). Р690 и Р700 — это энергетические ловушки. Другие специфические формы хлорофилла а, например a670 или a680, можно считать такими же вспомогательными пигментами, как и хлорофилл b. На рис. 9.14 не показаны каротиноиды, но они, по-видимому, тоже играют роль вспомогательных пигментов. Электроны, попавшие в энергетическую ловушку, используются для запуска световых реакций.


Рис. 9.13. Тилакоиды хлоропласта, выявленные методом замораживания-скалывания. Видна поверхность скола мембран самих гран и между ними. Обратите внимание на агрегаты частиц на этих мембранах


Рис. 9.14. Схематическое представление об энергетических ловушках в фотосистемах I и II. Р — пигмент, те молекула первичного пигмента хлорофилла а

Чтобы все ваши желания стали действительностью, вам необходимо вкусить блаженство с хорошими проститутками и заняться с ними любовью. Всегда индивидуалки помогут исполниться вашим самым порядочным голым фантазиям.

Ссылка на основную публикацию
Фосфалюгель инструкция, состав, показания, действие, отзывы и цены
Фосфалюгель (Phosphalugel) Маалокс Действующее вещество: Содержание 3D-изображения Состав и форма выпуска Фармакологическое действие Фармакодинамика Показания препарата Фосфалюгель Противопоказания Применение при...
Физраствор для ингаляций как применять в домашних условиях
Физраствор для ингаляций: применение для детей и взрослых При кашле у ребенка и взрослого полезно делать ингаляции с физраствором, который...
Физраствор при насморке у детей лечение Натрием хлоридом новорожденных и грудничков, сколько капать
Учимся промывать нос ребенку Заразиться простудой могут даже самые маленькие дети. Если школьники переносят насморк и заложенность носа достаточно легко,...
Фосфалюгель; инструкция по применению, описание, вопросы по препарату
ФОСФАЛЮГЕЛЬ Действующее вещество Состав и форма выпуска препарата ◊ Гель для приема внутрь белого или почти белого цвета, гомогенный после...
Adblock detector